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Cavity formation and the drying transition in the Lennard-Jones fluid

David M. Huang and David Chandler*
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720

~Received 3 September 1999!

By simulation and theory, we study the probability of observingN molecular centers within molecular sized
volumes for a Lennard-Jones fluid near liquid-vapor coexistence. For large volumes and smallN, the prob-
ability distribution differs markedly from Gaussian. The free energy per unit surface area to form empty
volumes~i.e., cavities! is a rapidly varying function of the radius for small cavities. It becomes constant for
large volumes. The source of these behaviors is the occurrence of drying~i.e., solvent depletion! at the cavity
surface. The crossover to drying occurs on microscopic length scales, with significant density depletion found
for cavities with radii of the order of two or more Lennard-Jones diameters. Reasonable agreement is found
between the simulation results and the theory developed by Lum, Chandler, and Weeks@J. Phys. Chem. B103,
4570 ~1999!#.

PACS number~s!: 61.20.Gy, 61.20.Ja, 61.20.Ne, 68.45.2v
s
uc
ap
ea
be
ze
t-

ng
a
e

ui
ra

er
ty
, i
e
.

an
-
ue
f
ie
er
e
ce
o

he
a
y.
n

-
he
lity

ough

f-

e
-

ons
at

ted.

e-

c
ist-
oc-

the
i-

f a
on
I. INTRODUCTION

Under conditions at which the liquid is the stable pha
for a bulk fluid, the presence of a large solute can prod
competing surface energetics favoring the metastable v
phase, thereby inducing drying, or depletion of solvent, n
the solute surface. Solvent depletion near surfaces has
observed, for example, in simulations of nanometer si
plates in water@1#, in simulations of hard spheres with a
tractive Lennard-Jones interactions near a hard wall@2#, in
simulations of a lattice gas confined between two walls@3#,
and in simulations of the mathematically isomorphic Isi
wetting transition@4#. Surface drying has been invoked as
possible reason for the strong attractive forces measured
perimentally between hydrophobic plates in water@5#. The
nanometer length scale on which drying occurs in that liq
@1,6# is a hydrophobic length scale of relevance to structu
biology @7#. Drying may therefore be important in a prop
thermodynamic description of protein folding and stabili
While this particular possibility remains to be investigated
is clear that surface induced drying is a phenomenon of g
eral importance and is thus a topic of theoretical interest

Lum, Chandler, and Weeks~LCW! have recently devel-
oped a theory of such drying that captures both small
large length scale effects@6#. The LCW treatment, a statisti
cal field theory version of the density functional theory d
to Weeks, Katsov, and Vollmayr@8#, provides a means o
interpreting solute induced drying in terms of the propert
of the pure liquid. The LCW theory was developed to und
stand the effects of hydrophobic solutes. It applies more g
erally, however, and it can be used to study surface indu
drying for solvation processes occurring in any liquid, n
just water.

In this paper, we study surface induced drying in t
Lennard-Jones fluid by computer simulation and we comp
our simulation results with the predictions of LCW theor
We do so by following the perspective invented by Pratt a
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his co-workers@9–11#. In particular, we determine the statis
tics of occupation probabilities of spherical volumes. T
probability of zero occupation corresponds to the probabi
of finding a cavity or void in a liquid. In a liquid close
enough to phase coexistence, the surface of a large en
cavity can induce drying. The Lennard-Jones~LJ! fluid is
sufficiently simple to make simulations computationally e
ficient. Furthermore, its equation of state@12# and surface
tension@13,14#, required as input for the LCW theory, ar
accurately known. Its uniform fluid radial distribution func
tion, also used in LCW theory, is easily estimated@15#.

II. COMPUTER SIMULATIONS

We performed constant pressure Monte Carlo simulati
for the LJ fluid with the potential truncated and shifted
2.5s. The interaction pair potential is

uLJT~r !5uLJ~r !2uLJ~2.5s!, r<2.5s,

50, r .2.5s, ~1!

where

uLJ~r !54«F S s

r D 12

2S s

r D 6G . ~2!

In most cases, a system of 864 particles was simula
The reduced temperatureT* 5kBT/« and pressurep*
5ps3/« were 0.85 and 0.022, respectively. This corr
sponds to a reduced densityr* 5rs3 of 0.70, which is the
bulk liquid densitynl referred to later. This thermodynami
state is an example of a liquid close to liquid-vapor coex
ence, sufficiently close that surface induced drying can
cur.

Each simulation was directed towards computing
probabilityP(N;v) thatN particles can be found in a spher
cal volumev54pR3/3. Volumes with radiiR from 0.5 to
3.0s were considered. The excess chemical potential o
spherical cavity with volumev,Dmv , is related to this prob-
ability by @9#
ic
1501 ©2000 The American Physical Society
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1502 PRE 61DAVID M. HUANG AND DAVID CHANDLER
Dmv52kBT ln P~0;v !. ~3!

The termcavity refers to an empty volume, i.e., a volum
with N50. Straightforward simulations provide statistical
accurate data about small fluctuations around the mean
ume occupancy. Large fluctuations are very improbable.
obtain statistics for large fluctuations, umbrella sampl
@16# was used. Sampling was carried out with overlapp
windows, each containing approximately 8 values ofN.
Within each window, a weight function was used to bias
P(N;v) distribution. A conventional simulation confined t
the window was first performed to obtain an estimate of
distribution in that window. The weight function,w̃(N) for
the umbrella sampled simulation was then chosen to
w̃(N)}1/Pest(N;v), wherePest(N;v) is the estimated distri-
bution. This choice forw̃(N) produced a nearly uniform dis
tribution of N within that window, thus enabling it to be
efficiently sampled. During each simulation, the system w
equilibrated for 100 000 Monte Carlo cycles, and data w
collected every 5 cycles for a total of 200 000 cycles. Er
estimates for all our simulation results are no larger than
the size of the circles we use to graphically represent
results in Figs. 1–3.

For theR53.0s volume, the average side length of th
simulation box was less than twice the volume diameter.
investigate the significance of finite size effects, the simu
tions were repeated for a system of 2048 particles, co
sponding to an increase in box side length of 33%. No s
nificant change to the calculated probability distributions
excess chemical potentials was found. This finding indica
that, for the results reported herein, finite size effects are
important in the 864 particle system.

The P(N;v) distributions computed from simulation ar
shown in Fig. 1. Gaussians with the same mean and varia
as these distributions are also plotted. Gaussian statistic

FIG. 1. Volume occupation probabilitiesP(N; v) for LJ fluid
(r* 50.70,T* 50.85,p* 50.022) from simulation~circles!, from
the Gaussian distribution with mean occupancy^N&v and variance
^N2&v2^N&v

2 ~dashed lines!, and from LCW theory~thick solid
lines!. The radii are~a! 1.0s, ~b! 1.5s, ~c! 2.0s, and~d! 3.0s. Fit of
Eq. ~7! to the simulation curve is shown in~d! ~thin solid line!.
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density fluctuations is the basis of the most successful th
ries of microscopic structure of uniform fluids@17#. It is clear
from Fig. 1 that, although the distributions are very close
Gaussian for the smaller volumes, they deviate significan
from Gaussian behavior for large volumes and smallN. For
the R53.0s volume, the Gaussian distribution underes
matesP(0;v) by 50 orders of magnitude, corresponding
an overestimate of the excess cavity chemical potentialDmv
of more than 100kBT. Predictions of the thermodynamics o
solvation of large objects based on Gaussian statistics
P(N;v) are therefore likely to yield erroneous results,
illustrated in Fig. 2.

Figure 3 shows the average particle density,n(r ), as a
function of the distancer from a spherical cavity center a
the origin. Specifically,g(r 1R)5n(r 1R)/nl is plotted for
cavities with radiiR51.0, 2.0, and 3.0s. The contact value,
g(R1), can be related to the compressive force]Dmv /]R
exerted on the cavity by the surrounding solvent@18#. In
particular,

]Dmv

]R
54pnlkBTR2g~R1!. ~4!

Stillinger @19# argued that for cavities in water,g(R1) is a
nonmonotonic function ofR. With the same reasoning, es
sentially the same behavior is expected and observed in
current work for the LJ fluid. For small cavities,g(R1) in-
creases from 1.0 for a cavity of zero radius as the surrou
ing fluid, acting as a locally elastic medium, applies an
creasing compressive force. For theR51.0s cavity,
g(R1).1.0. Density depletion, i.e.,g(R1),1.0, is evident

FIG. 2. Excess chemical potential for a cavity of radiusR in the
LJ fluid (r* 50.70,T* 50.85,p* 50.022) from simulation
~circles!, from the Gaussian distribution with mean occupancy^N&v
and variancê N2&v2^N&v

2 ~dashed line!, and from LCW theory
~thick solid line!. Inset is the excess chemical potential per u
surface area of the sphere. The arrow indicates the value of
surface tensiong for the nearby coexisting liquid and vapor@13#.
Also shown in the inset are the scaled particle theory results u
the Reiss approximation@18# ~thin solid line! and the Stillinger
approximation@19# with surface tension values of 0.33«/s2 ~dot-
dash line! and 0.56«/s2 ~dotted line!.
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PRE 61 1503CAVITY FORMATION AND THE DRYING TRANSITION . . .
for theR52.0s cavity and becomes more pronounced as
size of the cavity increases. For the volumes with radii
and 3.0s and in whichN is small but nonzero, it is found
that the particles inside the volume spend most of the t
near the edge of the volume, illustrating the unbalanced
tractive force responsible for drying@8,20#. This unbalanced
force becomes significant when the size of the inhomoge
ity in the solvent becomes relatively large, and countera
the effect of the compressive force that produces the pea
g(r ) at contact for small cavities. For fluids without attra
tive interactions, such as the hard sphere fluid,g(r ) has a
sharp peak at contact even for a large solute such as a
wall @21#.

For large volumes, the shape of theP(N;v) distributions
graphed in Fig. 1 for the large volumes can be explained
terms of the formation of a vapor bubble inside the volum
This model is illustrated in Fig. 4. Approximating the liqu
density inside the volume but outside the bubble as the b
liquid densitynl , N can be related to the radius of the bubb
r b , where r b

35(3/4pnl)(^N&v2N). The free energy re-
quired to grow the bubble is the work against a surface t
sion g̃ and an external pressurep. That is,

F„N;r b~N!…5
4p

3
r b

3p14pr b
2g̃. ~5!

The probability P(N;v) is the product of the Boltzmann
weight for this energy and the volume accessible to
bubble inside the volumeV„N;r b(N)…5(4p/3)(R2r b)3.
Specifically,

FIG. 3. Radial distribution functiong(r 1R)5n(r 1R)/nl as a
function of distancer from the cavity center for cavities with rad
R of 1.0s, 2.0s and 3.0s. Circles denote simulation results (r*
50.70,T* 50.85,p* 50.022) and thick solid lines denote corre
sponding LCW theory results. For ease of viewing, theg(r 1R) for
the cavities with radii 1.0s and 2.0s have been shifted vertically by
0.50 and 0.25 units, respectively@i.e., S(R)50, 0.25 and 0.50 for
R53.0s, 2.0s and 1.0s, respectively#. The inset shows the contac
valueg(R1) as a function of cavity radiusR from simulation, LCW
theory and three scaled particle theory calculations@using the Reiss
approximation@18# ~thin solid line! and the Stillinger approxima
tion @19# with surface tension values of 0.33«/s2 ~dot-dash line!
and 0.56«/s2 ~dotted line!#. The value ofg(R1) corresponding to
the density of the nearby coexisting gas is;bp/nl.0.04.
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P~N;v !}V~N!exp@2bF~N!#, ~6!

whereb51/kBT. Therefore, in terms ofN and the average
volume occupancŷN&v ,

ln P~N;v !' ln$N13^N&v
1/3~^N&v2N!1/3@~N2^N&v!1/3

2^N&v
1/3#%2b

~^N&v2N!

nl
p

24pbS 3

4pnl
D 2/3

~^N&v2N!2/3g̃1~const!.

~7!

Under the conditions simulated,p is small (0.022«/s3) and
so the second term in Eq.~7! hardly contributes to lnP(N;v).
For theR53.0s volume, andN,^N&v/2, the first term of
Eq. ~7! contributes less than 15% of the total magnitude
ln P(N;v). This entropic term does decrease sharply
N→0 and explains the corresponding downturns in
simulation curves for lnP(N;v) in Fig. 1. As the bubble
grows, there are fewer ways in which it can move in t
volume, resulting in a reduction inP(N;v).

Most of the variation in lnP(N;v) comes from the second
term. The plateau value of the quantityDmv/4pR2 in Fig. 2,
0.56«/s2, is the free energy per unit surface area for lar
cavity formation. It is the surface tension for a LJ fluid a
jacent to a large cavity at the thermodynamic state studie
the simulations. Usingg̃50.56«/s2 in Eq. ~7! gives good
agreement with theP(N;v) distribution from simulation, as

FIG. 4. Two-dimensional slice through the center of the volu
with radiusR53.0s. The heavy circles~of various sizes! are the
intersections of the Lennard-Jones spheres~diameters) with the
plane cutting the center of the volume. The positions of the sph
shows an instantaneous configuration for this slice from the si
lation restricting 35<N<40. The circle of radiusr b depicts the
vapor bubble invoked in Eqs.~5!–~7!. The densityr is zero inside
the bubble and is equal to the liquid densitynl outside the bubble.
The figure illustrates the assumptions used to derive Eq.~7!.
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1504 PRE 61DAVID M. HUANG AND DAVID CHANDLER
shown in Fig. 1~d!. As such, the assumption of bubble fo
mation inside the volume appears to be physically accu
and is consistent with the occurrence of drying.

Note that the surface tensiong̃ applies to an interface
constrained by the adjacent cavity wall. It should be dist
guished from the surface tension,g.0.33«/s2, at the liquid-
vapor coexisting state close to the bulk thermodynamic s
considered here@13#. The surface tensiong̃ is generally
larger thang since fluctuations present in the free interfa
are quenched by the wall. The distinction betweeng̃ andg
has been appreciated at least since the creation of sc
particle theory@22#.

III. COMPARISON WITH THEORY

The simulation results described in the previous secti
can be interpreted with theory, provided that theory can p
dict drying. Standard perturbation theories and integral eq
tion theories such as the mean spherical approximation,
Percus-Yevick equation and so forth@23# fail in this regard
because they are based upon the general model of Gau
density fluctuations about a uniform fluid@17# . Indeed, when
these theories are applied to the cavities considered in Fi
they fail to predict density depletion. Instead, forR52.0s
and R53.0s, they predict density profiles similar to theR
51.0s case. Rather than Gaussian, an appropriate th
must be consistent with a bistable distribution for dens
fluctuations, with one basin of stability corresponding to
high density fluid, and the other corresponding to a low d
sity fluid. The LCW theory@6# is a theory of this type.

The LCW theory calculations carried out in this wo
specifically use Eqs.~2!–~15! in Ref. @6#. To implement the
theory, one needs to specify several quantities:~1! w(n), the
local excess density of the grand potential relative to
liquid @see Eq.~2! in Ref. @6##; ~2! g, the surface tension o
the free liquid-vapor interface at a coexistence point clos
the thermodynamic state of interest;~3! l, the length scale
over which quickly varying density fluctuations,dr(r ), are
coarse grained@see Eq.~14! in Ref. @6##; and ~4! g(r ), the
radial distribution function at the bulk densitynl .

By definition,

w~n!5 f ~n!2m ln2@ f ~nl !2m lnl #, ~8!

wheref (n) is the local Helmholtz free energy density of th
fluid, andm l5] f /]nunl

is the chemical potential of the liq

uid. We have estimatedf (n) from an equation of state con
taining a mean field correction for the effect of truncati
and shifting the LJ potential@12#. This corrected equation
has been shown to accurately fit simulation data@12#. The
functionw(n) thereby calculated using Eq.~8! is plotted as a
function of n in Fig. 5. The value of the surface tensiong
.0.33«/s2 used was that determined from results of Ch
pelaet al. @13# for a 2.5s cutoff system at a temperature o
0.836kBT/«. The length scale over which the attractive i
teractions in the fluid fluctuate is@24#

l5gY E
ng

nl
dnA2aw~n!, ~9!
te

-
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where anl
252@](b f )/]b#nl

is the bulk energy density o

the liquid. This relation givesl.0.81s. It was found that
the calculations of bothP(N;v) andDmv are fairly insensi-
tive to the value ofl. Using various values ofl between
0.60s and 1.20s leavesDmv virtually unchanged. The radia
distribution function, g(r ), was obtained from compute
simulation of the uniform fluid. The analytical Weeks
Chandler-Andersen approximation@15#, based upon the hard
sphere fluidg(r ), could have been used with no noticeab
difference in the results we report below.

The P(N;v) distributions are calculated from LCW
theory using

P~N;v !5
Zv~N!

(
N>0

Zv~N!

, ~10!

where Zv(N), the partition function whenN solvent mol-
ecules occupy the volumev, is given by Eq.~9! in Ref. @6#.
The distributions are compared against the simulation res
in Fig. 1. The cavity excess chemical potentials@Eq. ~8! of
Ref. @6## are compared in Fig. 2. There is reasonable qu
titative agreement between theory and simulation in b
cases. The results of the theory show an approximately lin
relationship betweenDmv /4pR2 and R for the small cavi-
ties. For large values ofR,Dmv /4pR2 is essentially a con-
stant. The simulation results show indications of a simi
plateau inDmv /4pR2 for large values ofR. Significantly,
the value ofR at which the turnover to a drying regim
occurs is also reasonably well predicted by the theory.

Figure 3 shows the agreement between theory and si
lation for the density profiles for cavities with radii 1.0, 2
and 3.0s. The LCW calculations usedl.0.81s, as sug-
gested by Eq.~9!. The profiles are qualitatively similar forl

FIG. 5. Local excess density of the grand potential relative
the liquid w(n) for LJ fluid at reduced liquid densitynl50.70 and
reduced temperatureT* 50.85.
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PRE 61 1505CAVITY FORMATION AND THE DRYING TRANSITION . . .
between 0.6 and 1.2s. The profiles exhibit density depletio
with increasing cavity size due to drying.

It is interesting to note that the plateau inDmv /4pR2

calculated for water@6# occurs for cavity radii 10 Å, corre-
sponding to a radius of 3.7s, if the diameter of water is taken
to be 2.7 Å. The turnover radius for water therefore see
to be twice as large as that found in the current study of
LJ fluid. This difference is due to the relatively large surfa
tension of water when compared to the LJ fluid in the th
modynamic state studied~in comparable units! @25#. The
higher the surface tension, the greater cost of forming a sh
interface. As a consequence, depletion is less costly and
curs more readily for the LJ fluid than for water.

Hummer and Garde@26# examined what they terme
‘‘weak dewetting’’ by carrying out calculations for soft hy
drophobic spheres in water. The spheres considered in
work produced cavities of radiiR&5.0 Å. As such, solvent
depletion~i.e., drying! was not found in that work. Rathe
these workers verified Stillinger’s long standing predicti
@19# that g(R1) is nonmonotonic, reaching a maximum fo
values ofR significantly less than those that would produ
drying. The presence of the maximum ing(R1) does iden-
tify the smallest cavity radius for which the effects of unb
anced forces are notable. In the inset to Fig. 2, this maxim
for cavities in a Lennard-Jones fluid coincides with the e
dent shoulder ofDmv /4pR2 at R.1s. The plateau value
for this quantity, reached forR*2s, is g̃ in Eq. ~7!.

In light of the distinction betweeng and g̃, it is interest-
ing to compare the simulation results and LCW predictio
with those of scaled particle theory~SPT!. In practice, SPT is
F.
.
,

.

ys
s
e

-

rp
c-

at

m
-

s

an extrapolation or interpolation procedure that connects
chemical potentials of small and large cavities. The algeb
expressions used to make the connections are usually
structed so thatDmv /4pR2 exhibits a plateau when the pre
sure is low. Figure 2 shows the results of three such theo
The simplest, due to Reiss and co-workers@18# and applied
by Pierotti to hydrophobic solvation@27#, uses only small
cavity properties, the pressure and average density of
fluid. When applied to the LJ fluid studied herein, it show
no plateau. Stillinger’s improvement@19# upon that version
incorporates in addition the variance of density fluctuatio
in small volumes, and an assumed surface energy,g̃. For
cavities in water, the case considered by Stillinger,g is rela-
tively large, making fluctuation effects relatively small andg̃

close in value tog @6#. Indeed, Stillinger proposedg.g̃ in
his SPT treatment of hydrophobicity. For the LJ fluid studi
herein, however, the distinction betweeng and g̃ is impor-
tant to SPT, as seen in Figs. 2 and 3.@In Fig. 3, the contact
densities predicted from SPT are obtained from the S
chemical potentials from Eq.~4!#. By adopting the LCW
prediction for the value ofg̃(50.56«/s2), Stillinger’s SPT
agrees reasonably well with the available simulation d
@28#. Unfortunately, SPT provides no independent way
determine that parameter.
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