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Cavity formation and the drying transition in the Lennard-Jones fluid

David M. Huang and David Chandfer
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
(Received 3 September 1999

By simulation and theory, we study the probability of obserdihmolecular centers within molecular sized
volumes for a Lennard-Jones fluid near liquid-vapor coexistence. For large volumes and\sthallprob-
ability distribution differs markedly from Gaussian. The free energy per unit surface area to form empty
volumes(i.e., cavitie$ is a rapidly varying function of the radius for small cavities. It becomes constant for
large volumes. The source of these behaviors is the occurrence of dirgingolvent depletionat the cavity
surface. The crossover to drying occurs on microscopic length scales, with significant density depletion found
for cavities with radii of the order of two or more Lennard-Jones diameters. Reasonable agreement is found
between the simulation results and the theory developed by Lum, Chandler, and \leiikgs. Chem. BO3,
4570(1999].

PACS numbgs): 61.20.Gy, 61.20.Ja, 61.20.Ne, 68.45.

I. INTRODUCTION his co-workerg9—11]. In particular, we determine the statis-
tics of occupation probabilities of spherical volumes. The
Under conditions at which the liquid is the stable phaseprobability of zero occupation corresponds to the probability
for a bulk fluid, the presence of a large solute can produc@f finding a cavity or void in a liquid. In a liquid close
competing surface energetics favoring the metastable vap&nough to phase coexistence, the surface of a large enough
phase, thereby inducing drying, or depletion of solvent, neagavity can induce drying. The Lennard-Jongs) fluid is
the solute surface. Solvent depletion near surfaces has begHfficiently simple to make simulations computationally ef-
observed, for example, in simulations of nanometer sizedicient. Furthermore, its equation of stdte2] and surface
plates in watef1], in simulations of hard spheres with at- tension[13,14], required as input for the LCW theory, are
tractive Lennard-Jones interactions near a hard {&dJlin  accurately known. Its uniform fluid radial distribution func-
simulations of a lattice gas confined between two wils  tion, also used in LCW theory, is easily estimafé].
and in simulations of the mathematically isomorphic Ising

wetting transition4]. Surface drying has been invoked as a Il. COMPUTER SIMULATIONS
possible reason for the strong attractive forces measured ex- ) _
perimentally between hydrophobic plates in wag}: The We performed constant pressure Monte Carlo simulations

nanometer length scale on which drying occurs in that liquidor the LJ fluid with the potential truncated and shifted at
[1,6] is a hydrophobic length scale of relevance to structural-50. The interaction pair potential is

where

@

biology [7]. Drying may therefore be important in a proper

thermodynamic description of protein folding and stability. Ur(r)=upy(r) —u(2.50),  r<2.50,

While this particular possibility remains to be investigated, it -0

. ' e =0, r>2.50, 1)

is clear that surface induced drying is a phenomenon of gen-

eral importance and is thus a topic of theoretical interest.
Lum, Chandler, and Week&CW) have recently devel-

oped a theory of such drying that captures both small and 12 6

large length scale effecf6]. The LCW treatment, a statisti- u(r)=4e (E) _ (E) _

cal field theory version of the density functional theory due r r

to Weeks, Katsov, and Vollmay8], provides a means of

interpreting solute induced drying in terms of the properties In most cases, a system of 864 particles was simulated.

of the pure liquid. The LCW theory was developed to under-The reduced temperatur@* =kgT/e and pressurep*

stand the effects of hydrophobic solutes. It applies more gen=po®/e were 0.85 and 0.022, respectively. This corre-

erally, however, and it can be used to study surface inducesponds to a reduced densjt§ = po of 0.70, which is the

drying for solvation processes occurring in any liquid, notbulk liquid densityn, referred to later. This thermodynamic

just water. state is an example of a liquid close to liquid-vapor coexist-
In this paper, we study surface induced drying in theence, sufficiently close that surface induced drying can oc-

Lennard-Jones fluid by computer simulation and we compareur.

our simulation results with the predictions of LCW theory. Each simulation was directed towards computing the

We do so by following the perspective invented by Pratt andprobability P(N;v) thatN particles can be found in a spheri-

cal volumev=47R33. Volumes with radiiR from 0.5 to
3.00 were considered. The excess chemical potential of a
* Author to whom correspondence should be addressed. Electrongpherical cavity with volume,A u,, , is related to this prob-
address: chandler@cchem.berkeley.edu ability by [9]
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FIG. 2. Excess chemical potential for a cavity of radRis the
FIG. 1. Volume occupation probabilitig3(N; v) for LJ fluid LJ fluid (p*=0.70,T*=0.85,p*=0.022) from simulation
(p*=0.70,T*=0.85,p* =0.022) from simulation(circles, from  (circles, from the Gaussian distribution with mean occupa¢igy,
the Gaussian distribution with mean occupakiby, and variance and variance(N?),—(N)2 (dashed ling and from LCW theory
(N?),—(N)Z (dashed lings and from LCW theory(thick solid  (thick solid line. Inset is the excess chemical potential per unit

lines). The radii arg@) 1.0, (b) 1.50, (c) 2.00, and(d) 3.0c. Fitof  surface area of the sphere. The arrow indicates the value of the

Eq. (7) to the simulation curve is shown i) (thin solid ling). surface tensiory for the nearby coexisting liquid and vapfi3].
Also shown in the inset are the scaled particle theory results using
Ap,=—kgTInP(0;v). (3)  the Reiss approximatiofl8] (thin solid ling and the Stillinger

approximation[19] with surface tension values of 0382 (dot-
The termcavity refers to an empty volume, i.e., a volume dash ling and 0.5&/0? (dotted ling.
with N=0. Straightforward simulations provide statistically
accurate data about small fluctuations around the mean vottensity fluctuations is the basis of the most successful theo-
ume occupancy. Large fluctuations are very improbable. Teies of microscopic structure of uniform fluifi7]. It is clear
obtain statistics for large fluctuations, umbrella samplingfrom Fig. 1 that, although the distributions are very close to
[16] was used. Sampling was carried out with overlappingGaussian for the smaller volumes, they deviate significantly
windows, each containing approximately 8 values Mf  from Gaussian behavior for large volumes and smalFor
Within each window, a weight function was used to bias thethe R=3.00 volume, the Gaussian distribution underesti-
P(N;v) distribution. A conventional simulation confined to matesP(0;v) by 50 orders of magnitude, corresponding to
the window was first performed to obtain an estimate of thean overestimate of the excess cavity chemical potetia)

distribution in that window. The weight functiom(N) for ~ of more than 10RT. Predictions of the thermodynamics of
the umbrella sampled simulation was then chosen to bgolvation of large objects based on Gaussian statistics for

Vv(N)xl/Pes(N;v), whereP.(N;v) is the estimated distri- P(N;v) are therefore likely to yield erroneous results, as

. ) . ~ . . illustrated in Fig. 2.
bution. This choice fow(N) produced a nearly uniform dis- . : .
tribution of N within that window, thus enabling it to be Figure 3 shows the average particle densitir), as a

L . . . function of the distance from a spherical cavity center at
efficiently sampled. During each simulation, the system Wa%he origin. Specificallyg(r + R)=n(r + R)/n, is plotted for

equilibrated for 100 000 Monte Carlo cycles, and data Wascavities with radiiR=1.0, 2.0, and 3.8. The contact value,

collected every 5 cycles for a total of 200 000 cycles. Error”, _ .
estimates for all our simulation results are no larger than hal‘\"’(R ), can be relat_ed to the compressive forkey, /oR
the size of the circles we use to graphically represent th xerted on the cavity by the surrounding solvéb8]. In
results in Figs. 1-3. Particular,
For theR=3.00 volume, the average side length of the
simulation box was less than twice the volume diameter. To IR py
investigate the significance of finite size effects, the simula- IR
tions were repeated for a system of 2048 particles, corre-
sponding to an increase in box side length of 33%. No sigStillinger [19] argued that for cavities in wateg(R") is a
nificant change to the calculated probability distributions ornonmonotonic function oR. With the same reasoning, es-
excess chemical potentials was found. This finding indicatesentially the same behavior is expected and observed in the
that, for the results reported herein, finite size effects are naturrent work for the LJ fluid. For small cavitieg(R™) in-
important in the 864 particle system. creases from 1.0 for a cavity of zero radius as the surround-
The P(N;v) distributions computed from simulation are ing fluid, acting as a locally elastic medium, applies an in-
shown in Fig. 1. Gaussians with the same mean and varianeageasing compressive force. For thR=1.0c cavity,
as these distributions are also plotted. Gaussian statistics g{R™)>1.0. Density depletion, i.eg(R")<1.0, is evident

=4mn kg TR?g(R"). (4)



PRE 61 CAVITY FORMATION AND THE DRYING TRANSITION . .. 1503

g(r+ R)+ S(R)

FIG. 3. Radial distribution functiog(r + R)=n(r+R)/n, as a
function of distance from the cavity center for cavities with radii
R of 1.0, 2.00 and 3.@. Circles denote simulation resultpX
=0.70,T*=0.85,p* =0.022) and thick solid lines denote corre-
sponding LCW theory results. For ease of viewing, gife+ R) for FIG. 4. Two-dimensional slice through the center of the volume
the cavities with radii 1.8 and 2.@ have been shifted vertically by with radiusR=3.00. The heavy circlegof various sizesare the
0.50 and 0.25 units, respectivelye., S(R)=0, 0.25 and 0.50 for intersections of the Lennard-Jones sphediameters) with the
R=3.00, 2.00 and 1.0, respectively. The inset shows the contact plane cutting the center of the volume. The positions of the spheres
valueg(R") as a function of cavity radiuR from simulation, LCW  shows an instantaneous configuration for this slice from the simu-
theory and three scaled particle theory calculatiarsing the Reiss  |ation restricting 35<N<40. The circle of radiug, depicts the
approximation[18] (thin solid ling and the Stillinger approxima- vapor bubble invoked in Eq$5)—(7). The densityp is zero inside
tion [19] with surface tension values of 08@* (dot-dash ling  the bubble and is equal to the liquid densityoutside the bubble.

and 0.56/0? (dotted ling]. The value ofg(R™*) corresponding to  The figure illustrates the assumptions used to derive(Bq.
the density of the nearby coexisting gas~igp/n;=0.04.

for theR=2.00 cavity and becomes more pronounced as the P(N;v)=V(N)exd —BF(N)], ©
size of the cavity increases. For the volumes with radii 2.0 .
and 3.& and in )\/NhiChN is small but nonzero, it is found where 5=1/kgT. Therefore, in terms oN and the average
that the particles inside the volume spend most of the timé’omme occupancyN)y .

near the edge of the volume, illustrating the unbalanced at- INPIN-V)~ In{N+3(NYY3(NDY. — NYY3 (N— (N, ) /3
tractive force responsible for dryiri@®,20]. This unbalanced NP(N;v)~= In{N-+ 3(N), *(N)y = N) T (N=(N),)
force becomes significant when the size of the inhomogene- s ({(N),—N)
ity in the solvent becomes relatively large, and counteracts (N =B———
the effect of the compressive force that produces the peak in
g(r) at contact for small cavities. For fluids without attrac- 3 |28 oz

tive interactions, such as the hard sphere flgj¢t,) has a —4np 47, ((N)y—=N)““y+(cons}.
sharp peak at contact even for a large solute such as a hard

wall [21]. (7)

For large volumes, the shape of tR€N;v) distributions . . : 3
graphed in Fig. 1 for the large volumes can be explained inUnder the conditions simulateg,is small (0.022/0") and

: o the second term in E¢¢) hardly contributes to IR(N;v).
terms of the formation of a vapor bubble inside the volume 3° - :
This model is illustrated in Fig. 4. Approximating the liquid For theR*S.'OU volume, andN<0(N)\,/2, the first term of
density inside the volume but outside the bubble as the bulfgd: (7) confributes less than 15% of the total magnitude of

liquid densityn,, N can be related to the radius of the bubbleli: P(ON;V)' dTh'S lehtro?rl]c term doesd_dec:jeaset sharply ﬂ?s
My, wherer§:(3/477n|)((N>V—N). The free energy re- U and expiains the C(.)rre_spor_] ing cownturns in the
. . : simulation curves for I®P(N;v) in Fig. 1. As the bubble
quired to grow the bubble is the work against a surface ten- . S .
o . grows, there are fewer ways in which it can move in the

siony and an external pressupe That is, volume, resulting in a reduction iR(N;v).
4o B Most of the variation in IP(N;v) comes from the second
F(N;rp(N))= ?r§p+4wr§y. (5) term. The_plateau value of the quan_tﬁyL\,Msz in Fig. 2,
0.56/0?, is the free energy per unit surface area for large
The probability P(N;v) is the product of the Boltzmann cavity formation. It is the surface tension for a LJ fluid ad-
weight for this energy and the volume accessible to thdacentto alarge Cavity~at the thermodynamic state studied in
bubble inside the volume/(N;r,(N))=(4=/3)(R—r,)3.  the simulations. Usingy=0.56/c? in Eq. (7) gives good
Specifically, agreement with th&(N;v) distribution from simulation, as

n
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shown in Fig. 1d). As such, the assumption of bubble for- 03 . . .
mation inside the volume appears to be physically accurate
and is consistent with the occurrence of drying.

Note that the surface tensiop applies to an interface
constrained by the adjacent cavity wall. It should be distin-
guished from the surface tensioye=0.33/02, at the liquid- 02
vapor coexisting state close to the bulk thermodynamic state
considered herg13]. The surface tensiory is generally
larger thany since fluctuations present in the free interface
are quenched by the wall. The distinction betweeand y
has been appreciated at least since the creation of scaled g4
particle theory[22].

w(n) /(e/o®)

IIl. COMPARISON WITH THEORY

The simulation results described in the previous sections . . . ‘
can be interpreted with theory, provided that theory can pre- 0 0 0.2 0.4 0.6 0.8
dict drying. Standard perturbation theories and integral equa- n
tion theories such as the mean spherical approximation, the ) . .
Percus-Yevick equation and so foif@3] fail in this regard FIIG: LOC?' eﬁilss. ddetnsna/ of éhf g.r:r(;d pqterflgl;glatnée to
because they are based upon the general model of Gaussich?eﬁu'Cq;c:I t\gr;n)er(;zurﬁ* i“o 25 reduced liquid density,=0.70 an
density fluctuations about a uniform flJi@l7] . Indeed, when P Haae
these theories are applied to the cavities considered in Fig. 3, ) ) ]
they fail to predict density depletion. Instead, Re=2.00  Whereany=—[d(Bf)/dp], is the bulk energy density of
and R=3.0o, they predict density profiles similar to tie  the liquid. This relation givea.=0.81c. It was found that
=1.00 case. Rather than Gaussian, an appropriate theoithe calculations of botf®(N;v) andA u, are fairly insensi-
must be consistent with a bistable distribution for densitytive to the value ofA. Using various values ok between
fluctuations, with one basin of stability corresponding to a0.600 and 1.2@ leavesA u,, virtually unchanged. The radial
high density fluid, and the other corresponding to a low dendistribution function, g(r), was obtained from computer
sity fluid. The LCW theony[6] is a theory of this type. simulation of the uniform fluid. The analytical Weeks-

The LCW theory calculations carried out in this work Chandler-Andersen approximatiph5], based upon the hard
specifically use Eq92)—(15) in Ref.[6]. To implement the sphere fluidg(r), could have been used with no noticeable
theory, one needs to specify several quantitigsw(n), the  difference in the results we report below.
local excess density of the grand potential relative to the The P(N;v) distributions are calculated from LCW
liguid [see Eq.(2) in Ref.[6]]; (2) y, the surface tension of theory using
the free liquid-vapor interface at a coexistence point close to
the thermodynamic state of intere8) \, the length scale

over which quickly varying density fluctuationgp(r), are Z,(N)
coarse grainefisee Eq.(14) in Ref. [6]]; and (4) g(r), the P(N;v)= v , (10)
radial distribution function at the bulk density, . E Z,(N)
By definition, N=o "
w(n)=f(n)—wn=[f(n)—pn], (8)

where Z,(N), the partition function whemN solvent mol-
wheref(n) is the local Helmholtz free energy density of the ecules occupy the volume, is given by Eq.(9) in Ref. [6].
fluid, and ,u|=(9f/(9n|nI is the chemical potential of the lig- The distributions are compared against the simulation results
uid. We have estimatef{(n) from an equation of state con- N Fig. 1. The cavity excess chemical potentigfs). (8) of
taining a mean field correction for the effect of truncating Ref. [6]] are compared in Fig. 2. There is reasonable quan-
and shifting the LJ potentidl12]. This corrected equation titative agreement between theory and simulation in both
has been shown to accurately fit simulation dgta]. The  Cases. The results of the theory show an approximately linear
functionw(n) thereby calculated using E¢B) is plotted as a  relationship between ., /47R? andzR for the small cavi-
function of n in Fig. 5. The value of the surface tensign fies. For large values d®,Aw, /47mR® is essentially a con-
~0.3%/02 used was that determined from results of Cha-Stant. The simulation results show indications of a similar
pelaet al. [13] for a 2.57 cutoff system at a temperature of Plateau inAu, /47R? for large values oR. Significantly,

0.83&zT/z. The length scale over which the attractive in- the value ofR at which the turnover to a drying regime
teractions in the fluid fluctuate [24] occurs is also reasonably well predicted by the theory.

Figure 3 shows the agreement between theory and simu-
lation for the density profiles for cavities with radii 1.0, 2.0

)\:7/ fnldnw/ZaW(n), 9) and 3.@&. The LCW calculations used =0.810, as sug-
ng gested by Eq(9). The profiles are qualitatively similar for
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between 0.6 and 162 The profiles exhibit density depletion an extrapolation or interpolation procedure that connects the

with increasing cavity size due to drying. chemical potentials of small and large cavities. The algebraic
It is interesting to note that the plateau i, /4wR?  expressions used to make the connections are usually con-

calculated for watef6] occurs for cavity radii 10 A, corre- structed so thah u, /47R? exhibits a plateau when the pres-

sponding to a radius of 3¢7 if the diameter of water is taken sure is low. Figure 2 shows the results of three such theories.

to be 2.7 A. The turnover radius for water therefore seemdhe simplest, due to Reiss and co-workgt8] and applied

to be twice as large as that found in the current study of thdy Pierotti to hydrophobic solvatiof27], uses only small

LJ fluid. This difference is due to the relatively large surfacecavity properties, the pressure and average density of the

tension of water when compared to the LJ fluid in the therfluid. When applied to the LJ fluid studied herein, it shows

modynamic state studien comparable unijs[25]. The no plateau. Stillinger’'s improvemeft9] upon that version

higher the surface tension, the greater cost of forming a sharpcorporates in addition the variance of density fluctuations

interface. As a consequence, depletion is less costly and ofy small volumes, and an assumed surface enejgykor

curs more readily for the LJ fluid than for water. cavities in water, the case considered by Stillingers rela-

. Hummer a_nd”Garde{ZG]_ examined whgt they termed tively large, making fluctuation effects relatively small apd
weak dewetting” by carrying out calculations for soft hy- {ose in value toy [6]. Indeed, Stillinger proposegi=7 in

Svrgrﬁ)(hgggui%r:je;iilinegv gﬁgdgijsg hzre:scgg ;l]desroelselrr]\t th Is SPT treatment of hydrophobicity. For the LJ fluid studied

depletion(i.e., drying was not found in that work. Rather, Nerein, however, the distinction betwegnand y is impor-
these workers verified Stillinger's long standing predictiontant to SPT, as seen in Figs. 2 andB. Fig. 3, the contact
[19] thatg(R") is nonmonotonic, reaching a maximum for densmes predlcyed from SPT are obtalne_d from the SPT
values ofR significantly less than those that would producechemical potentials from Eq4)]. By adopting the LCW
drying. The presence of the maximumd@R*) does iden-  prediction for the value ofy(=0.56/0?), Stillinger's SPT

tify the smallest cavity radius for which the effects of unbal- agrees reasonably well with the available simulation data
anced forces are notable. In the inset to Fig. 2, this maximurfi28]. Unfortunately, SPT provides no independent way to
for cavities in a Lennard-Jones fluid coincides with the evi-determine that parameter.

dent shoulder ofA u, /47wR? at R=1¢. The plateau value

for this quantity, reached foR=2¢, is y in Eq. (7).
In light of the distinction betweer and’y, it is interest- This research has been supported in part by the National

ing to compare the simulation results and LCW predictionsScience Foundation. Helpful discussions with Ka Lum and
with those of scaled particle theof@PT). In practice, SPT is Lawrence Pratt are gratefully acknowledged.
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